A glimpse into the Self-Organizing Maps (SOM)

Self-Organizing Maps (SOM) are neural structures proposed for the first time by the computer scientist T. Kohonen in the late 1980s (that’s why they are also known as Kohonen Networks). Their peculiarities are the ability to auto-cluster data according to the topological features of the samples and the approach to…

ML Algorithms Addendum: Hebbian Learning

Hebbian Learning is one the most famous learning theories, proposed by the Canadian psychologist Donald Hebb in 1949, many years before his results were confirmed through neuroscientific experiments. Artificial Intelligence researchers immediately understood the importance of his theory when applied to artificial neural networks and, even if more efficient algorithms…

Hodgkin-Huxley spiking neuron model in Python

The Hodgkin-Huxley model (published on 1952 in The Journal of Physiology [1]) is the most famous spiking neuron model (also if there are simpler alternatives like the “Integrate-and-fire” model which performs quite well). It’s made up of a system of four ordinary differential equations that can be easily integrated using several…